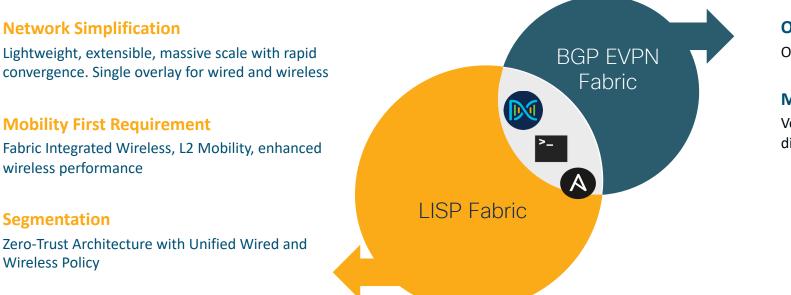

Networkpeople DET 26-03-2024

Jesse Schmidt

cisco live!

Modern, Open and Scalable Fabrics

IETF Standard based Protocols



BRKENS-2810

Flexible Fabric Options Tailored to *Customer Outcomes*!

Cisco SD-Access with LISP Control Plane VXLAN Data Plane

Cisco SD-Access with BGP EVPN Control Plane VXLAN Data Plane

One Fabric Architecture (Campus and DC)

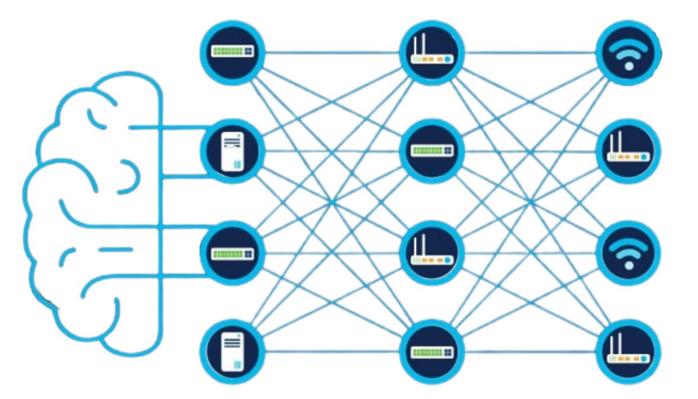
Operational ease with a single familiar protocol

Multi-vendor interoperability

Vendor-agnostic solution with unique Cisco differentiators

One Infrastructure | Single Data plane | Consistent Zero-Trust Experience

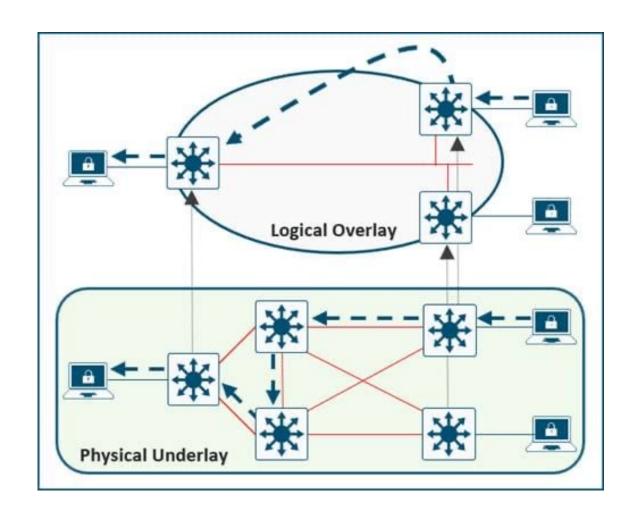
Roles and Terminology



- 2. SD-Access Roles
- 3. Fabric Constructs

What is a Network Fabric?

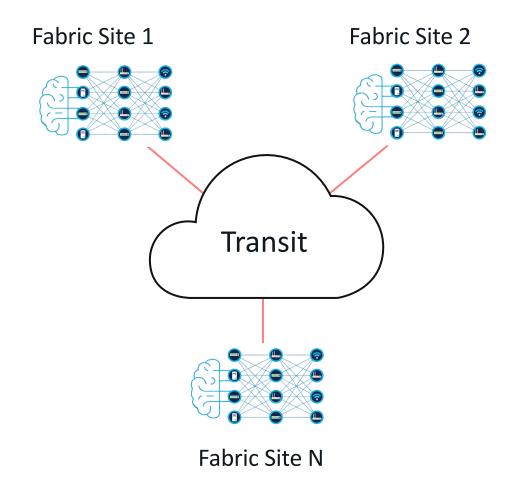
- Transports data from source to destination.
- Mesh of connections between network devices.
- Usually refers to a virtualized, automated lattice of overlay connections.


What is an Overlay?

- An Overlay network is a logical topology used to virtually connect devices, built over an arbitrary physical Underlay topology.
- Examples of overlay technologies:
 - GRE
 - MPLS
 - IPsec
 - CAPWAP
 - LISP

BGP EVPN

VXLAN


- SD-WAN
- ACI
- OTV

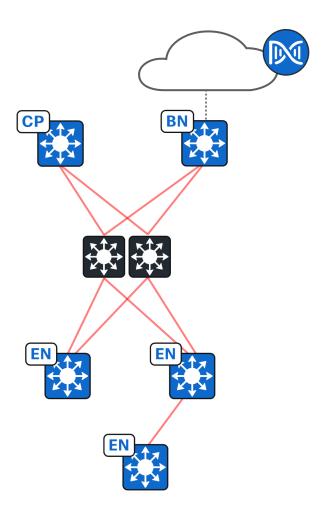
What is Fabric Site?

- An instance of an SD-Access Fabric.
- Typically defined by disparate geographical locations, but not always.
- Can also be defined by:
 - Endpoint scale.
 - Failure domain scoping.
 - RTT.
 - Underlay connectivity attributes.
- Typically interconnected by a "Transit".

Roles and Terminology

1. Concepts

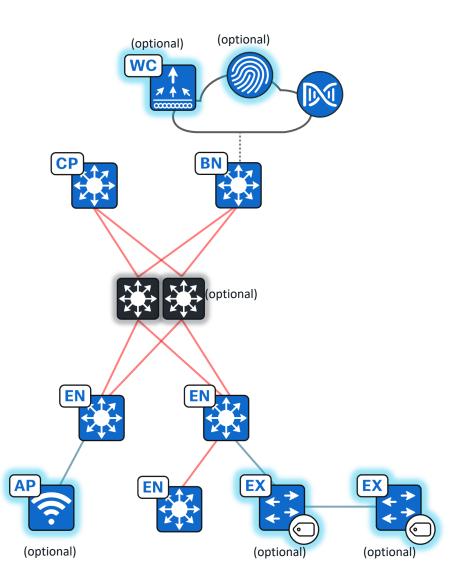
2. SD-Access Roles


3. Fabric Constructs

Cisco SD-Access Roles

Mandatory Components

- Cisco Catalyst Center GUI and APIs for intent-based automation of wired and wireless fabric devices.
- Fabric Border Nodes A fabric device that connects external L3 and L2 networks to the Cisco SD-Access fabric.
- Edge Nodes A fabric device that connects wired endpoints to the Cisco SD-Access fabric and optionally enforces micro-segmentation policy.
- **Control Plane Node** Map System that tracks endpoint to fabric node relationships.



Cisco SD-Access Roles

Optional Components

- Identity Services Engine Highly recommended. NAC and ID services for dynamic endpoint to Security Group Tag mapping and policy distribution.
- Fabric Wireless Controller and Fabric APs Highly recommended. Connects wireless endpoints to the SD-Access fabric.
- Extended Node A switch operating at Layer 2 that extends fabric connectivity and optionally enforces micro-segmentation policy.
- Intermediate Nodes Moves data between fabric nodes. Can be one or many hops.

Cisco SD-Access Roles

Some of the Supported Co-locations

Border Node and Control Plane Node.

Border Node, Control Plane Node, and Fabric Edge Node.

Border Node, Control Plane Node, and Embedded Wireless Controller.

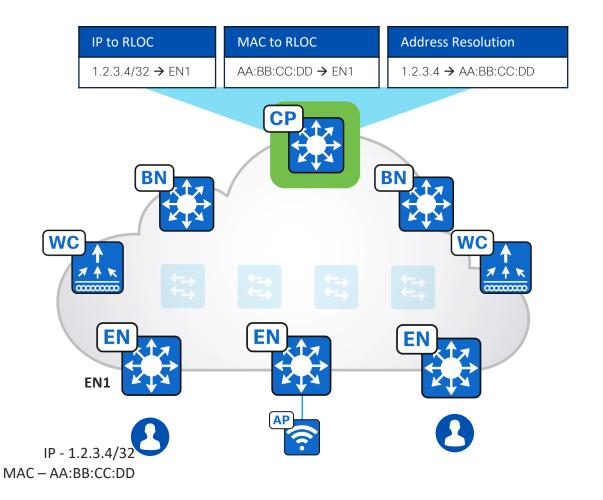
BN|CP|EN

Border Node, Control Plane Node, Fabric Edge Node, and Embedded Wireless Controller.

SD-Access Design Aides

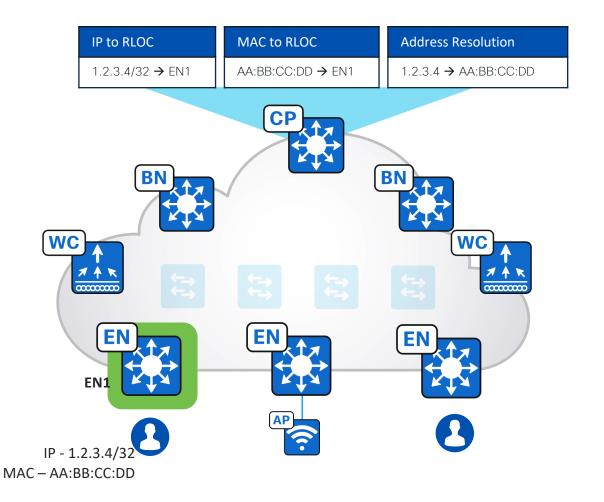
- Cisco Validated Design: <u>https://cs.co/sda-cvd</u>
- Design Tool (use Chrome): <u>http://cs.co/sda-design-tool</u>

• Compatibility Matrix: <u>http://cs.co/sda-compatibility-matrix</u>

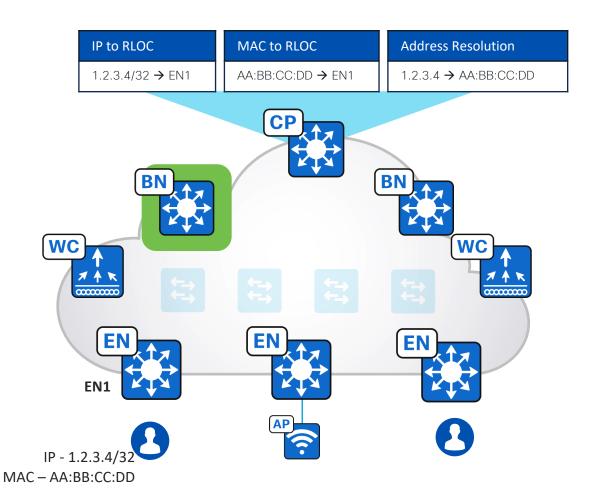

SD-Access Compatibility Matrix for Cisco DNA Center 2.3.3.6 (recommended release)

Device Role	Device Series	Device Model	Recommended Release	Supported Release
		C9300X-12Y	IOS XE 17.6.4	IOS XE 17.9.x
		C9300X-24Y C9300X-24HX		IOS XE 17.8.x IOS XE 17.7.x
		C9300X-48HXN		IOS XE 17.6.x
		C9300X-48HX		IOS XE 17.5.x

Control Plane Node Maintains a Host and Network Tracking Database


- A simple Host Database that maps Endpoint IDs to locations, along with other attributes.
- Host Database supports multiple types of Endpoint ID lookup types (IPv4, IPv6 or MAC).
- Receives Endpoint ID map registrations from Edge Nodes, Border Nodes and Fabric Wireless LAN Controllers.
- Publishes registrations to Subscribers (Border Nodes).
- Resolves lookup requests from Edge Nodes and Border Nodes, to locate destination Endpoint IDs.

Edge Node Provides First Hop Services for Endpoints


- Responsible for Authenticating and Authorizing wired endpoints (e.g. 802.1X, MAB, static) in concert with ISE.
- Register Endpoint IDs (IPv4, IPv6, MAC) with the Control Plane Nodes.
- Provide an Anycast Gateway for the connected wired and wireless endpoints.
- Performs VXLAN encapsulation and decapsulation of traffic to and from all connected wired endpoints.

Border Node is the Fabric Site Entry and Exit for Network Traffic

- Subscribes to LISP Control Plane Node IPv4 and IPv6 Tables.
- There are 4 types of Border Node:
 - External Border Node.
 - Internal Border Node.
 - Internal + External Border Node.
 - Layer 2 Border Node.

Border Node is the Fabric Site Entry and Exit for Network Traffic

• External Border Node:

- The most common configuration.
- Exports all fabric subnets to outside the Fabric Site as eBGP summary routes.
- Acts as a gateway of last resort for the Fabric Site.
- Does not register eBGP prefixes from outside the Fabric Site into the fabric Control Plane.

Layer 3 Handoff Layer 2 Hando	off
Enable Layer-3 Handoff	
Local Autonomous Number 65004	
Default to all virtual networks (i)	í
Do not import external routes (i)	

Border Node is the Fabric Site Entry and Exit for Network Traffic

- Internal Border Node:
 - Exports all fabric subnets to outside the Fabric Site as eBGP summary routes.
 - Imports and registers eBGP-learned IPv4/IPv6 prefixes from outside the Fabric Site, into the fabric Control Plane.
 - Does not act as a gateway of last resort for the Fabric Site.

 Enable Layer-3 Handoff Local Autonomous Number 65004 Default to all virtual networks (i) Advanced 			
65004	✓ Enable Layer-3 F	landoff	
		lumber	
		irtual networks (i)	- (i

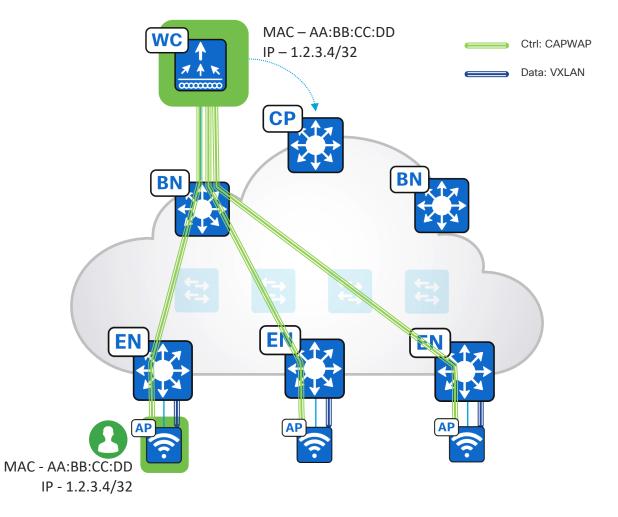
Border Node is the Fabric Site Entry and Exit for Network Traffic

• Internal + External Border Node:

- Exports all fabric subnets to outside the Fabric Site as eBGP summary routes.
- Imports and registers eBGP-learned IPv4/IPv6 prefixes from outside the Fabric Site, into the fabric Control Plane.
- Acts as a gateway of last resort for the Fabric Site.

_ayer 3 Handoff	Layer 2 Handoff
✓ Enable Layer-3 Harding	andoff
Local Autonomous No 65004	umber
Default to all vi	i rtual networks (i
🗌 Do not import e	external routes (j)
کُمْکَ Advanced	

Border Node is the Fabric Site Entry and Exit for Network Traffic


- Layer 2 Border Node:
 - Acts as Layer 2 handoff for pure Layer 2
 Overlays or Layer 2 + Layer 3 Overlays.
 - Allows VLAN translation between SD-Access network segments and non-fabric VLAN IDs.
 - Dual homing requires link aggregation; STP it not tunneled within the SD-Access Fabric.
 - Ideally should be separate device from the Layer 3 Border Node.

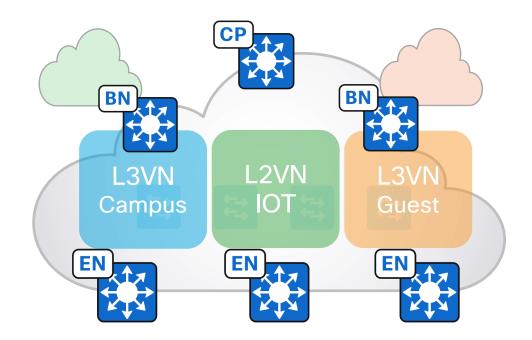
NP-DEMO1.cbr.ciscolabs.com						
ayer 3 Handoff Layer	r 2 Handoff					
LAYER 2 VIRTUAL NETWORKS WITH A GATEWAY OUTSIDE OF THE FABRIC						
Layer 2 Virtual Network	VLANs					
Handed off VLANs	0					
Q Search Layer 3 Virtua	ORKS WITH AN ANYCAST GATEWAY					
Layer 3 Virtual Network	•	Handed-off	VLANs			
Corp		1				
1 Records			Show Records: $25 \vee$			

Fabric Enabled Wireless for Unified Management, Policy and Data Planes

- Fabric WLC accessible though a Fabric Border Node (Underlay). Can be several hops away.
- Fabric Enabled APs reside in a dedicated IP range and communicate with the Fabric WLC (CAPWAP Control).
- Fabric WLC registers endpoints with the Control Plane Node.
- Fabric APs switch endpoint traffic to the adjacent Edge Node. No concentrator bottleneck. Wi-Fi 6 up to <u>9.6</u> Gbps. Wi-Fi 7 up to <u>46</u> Gbps.
- Wireless endpoints use same data plane and policy plane as wired endpoints.

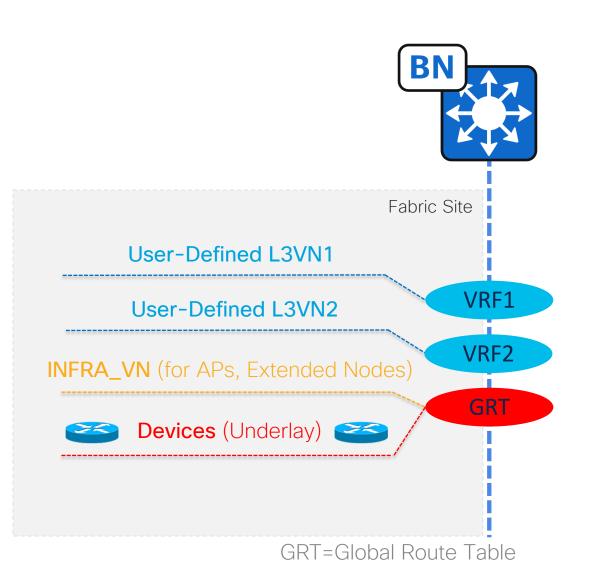
Roles and Terminology

1. Concepts

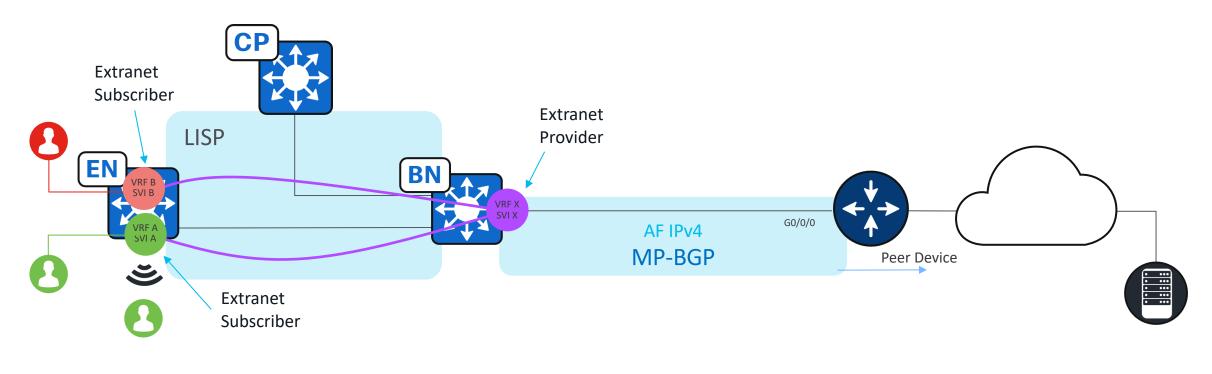

2. SD-Access Roles

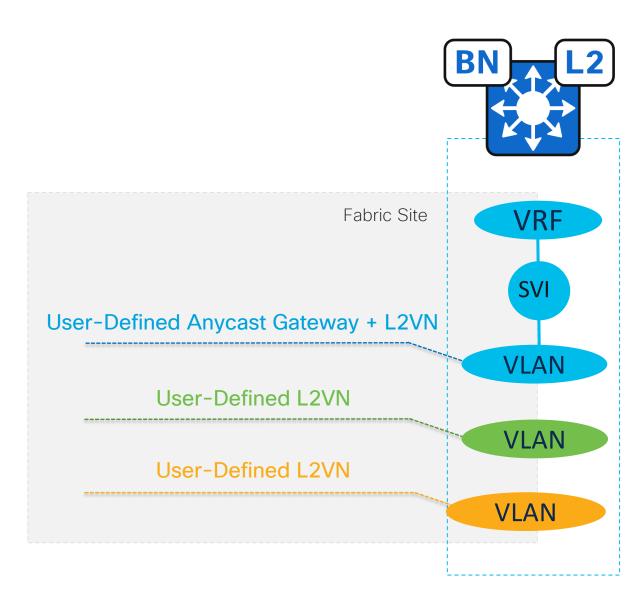
3. Fabric Constructs

Virtual Networks


- Layer 3 Virtual Networks use VRFs and LISP Instance IDs to maintain separate routing topologies.
 - Endpoint IDs (IPv4/IPv6 addresses) are routed within an L3VN.
- Layer 2 Virtual Networks use LISP Instance IDs and VLANs to maintain separate switching topologies.
 - Endpoint IDs (MAC addresses) are switched within an L2VN.
- Edge Nodes, Border Nodes and Fabric APs add a VNID (the LISP IID) to the fabric encapsulation.

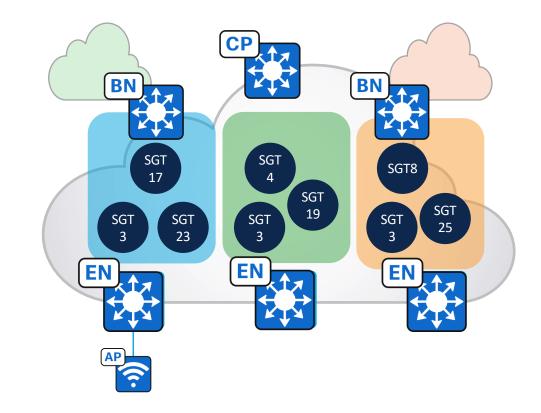
Layer 3 Virtual Networks


- User-Defined VNs can be added or removed on demand.
- INFRA_VN is only for Fabric Access Points and Extended Nodes in the Global Routing Table.
- Fabric Devices (Underlay) connectivity is in the Global Routing Table.

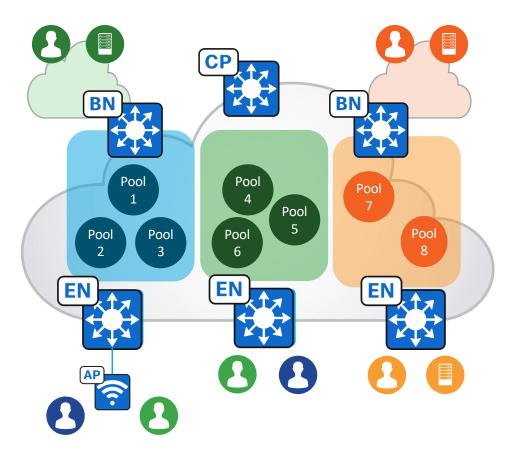

Extranet Provider Virtual Network Layer 3 Handoff

- Use an Extranet Policy to allow communication between one Provider Virtual Network and one or more Subscriber Virtual Networks.
- Extranet Policy is available from SD-Access 2.3.5.3. Requires LISP Pub/Sub Control Plane.

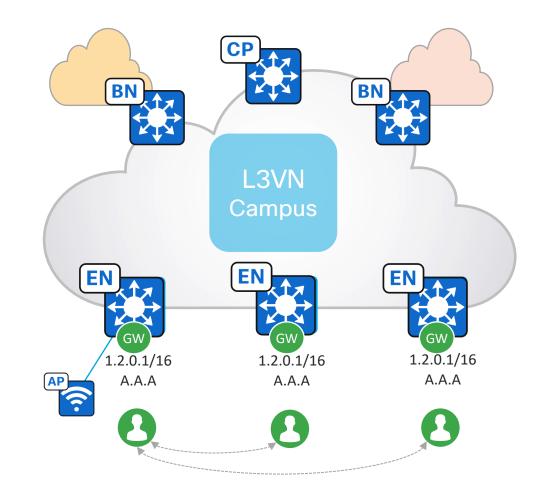
Cisco SD-Access Fabric Layer 2 Handoff


- Ancient wisdom: Route whenever you can, switch when you must.
- Layer 2 Virtual Networks handoff through a user-defined VLAN.
- Layer 2 Virtual Networks <u>may</u> implement Broadcast, unknown-unicast and multicast flooding. Be mindful of loop prevention.

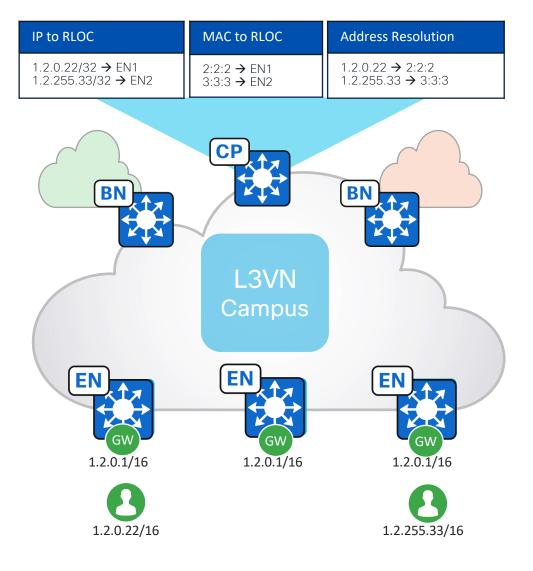
A Security Group Tag Assigns a "Group" to Each Endpoint


- Edge Nodes and Fabric APs assign a unique Security Group Tag (SGT) to each endpoint in concert with ISE.
- Edge Nodes and Fabric APs add an SGT to the fabric encapsulation.
- SGTs are used to implement IP-addressindependent traffic policies.
- SGTs can be extended to numerous other networking technologies e.g., Cisco Secure Firewall, Cisco SD-WAN, some third-party platforms, etc.

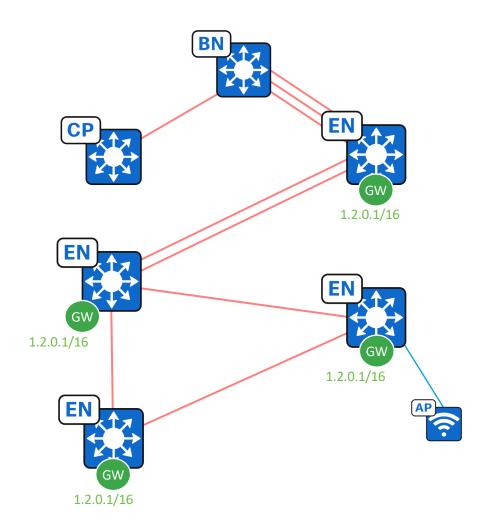
Host Pools Define a Default Gateway and Basic IP Services for Endpoints


- Edge Nodes instantiate an access VLAN and a Switched Virtual Interface (SVI) with userdefined IPv4/IPv6 addresses per Host Pool.
- Host Pools assigned to endpoints dynamically by AAA or statically per port.
- Edge Nodes and Fabric WLCs register endpoint IDs (/32, /128 or MAC) with the Control Plane, enabling IP mobility; any IP address anywhere.

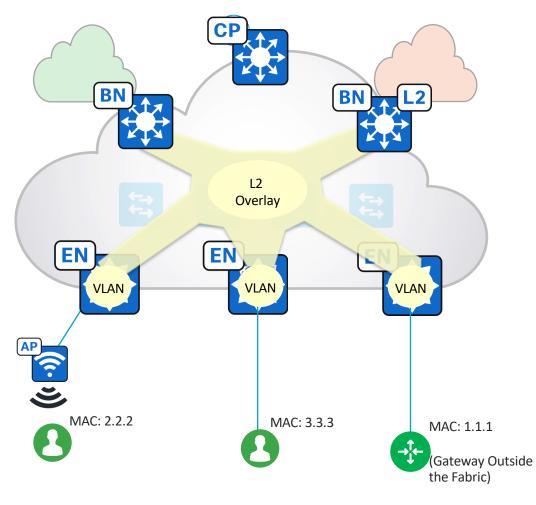
Anycast Gateway Provides a Default Gateway for IP-Capable Endpoints


- Similar principle and behavior to FHRP with a shared virtual IPv4/IPv6 addresses and MAC address.
- The same Switch Virtual Interface (SVI) is present on all Edge Nodes with the same virtual IP and MAC.
- The wired or wireless endpoint can connect to any switch or AP in the fabric and communicate with the same Anycast Gateway.

Host Pools are "stretched" via the Overlay


- Endpoint IPv4/IPv6 traffic arrives on an Edge Node and is then routed or switched by the Edge Node.
- Fabric Dynamic EID mapping allows endpointspecific (/32, /128, MAC) advertisement and mobility.
- No longer need VLANs to interconnect endpoints across Edge Nodes, this happens in the Overlay without broadcast flooding.

Accommodates any Physical Network Topology


- Overlays are agnostic to underlay physical topology.
- Any wired or wireless endpoint address anywhere, including environments with unusual cabling implementations.
- Routed underlay IGP takes care of load balancing and fast link/node fault convergence. Obsoletes less robust mechanisms like L2 Trunking and STP.

Layer 2 Virtual Networks

- By default, an L2VN is deployed with each Anycast Gateway and Layer 2 Flooding is disabled. Layer 2 Flooding can be enabled, if necessary, to service niche applications.
- L2VN can be deployed without an Anycast Gateway, and Layer 2 Flooding cannot be disabled.
 - Often referred to as "Gateway Outside the Fabric".
- If Layer 2 Flooding is enabled, a Multicast underlay P2MP tunnel is established between all Fabric Nodes.

Fabric Fundamentals

- 2. Data Plane
- 3. Policy Plane

Control Plane: LISP

- Locator/ID Separation Protocol.
- IETF Standards Track RFC9299-RFC9306 and RFC9347.
- IETF LISP Drafts.

Lightweight, Efficient, Scalable and Extensible

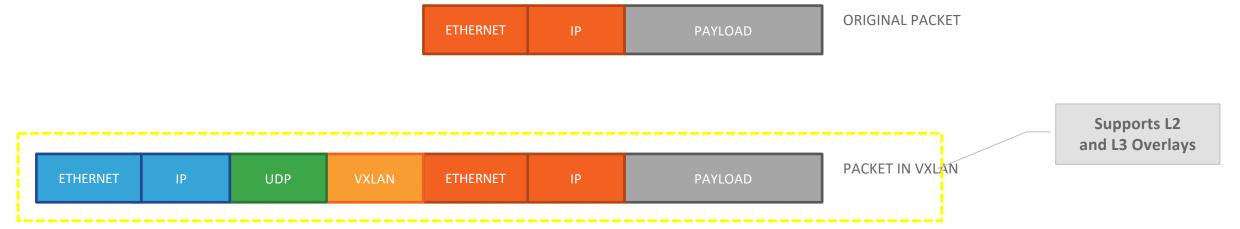
LISP in Cisco SD-Access

	Configure Control Plane			
S	elect route distribution protocol:			
	LISP/BGP	0	LISP Pub/Sub	0
	LISP/BGP uses concurrent LISP and BGP protocols to distribute reachability information. LISP/BGP is the traditional SD-Access control plane architecture and is retained for backwards compatibility. LISP Pub/Sub is recommended for new network implementations.		LISP Pub/Sub (Publish/Subscribe) accelerates network convergence, simplifies network operations, and provides the foundation for new SD-Access use cases. LISP Pub/Sub requires all Border Nodes, Control Plane Nodes and Edge Nodes to be running IOS XE 17.6.x or later.	

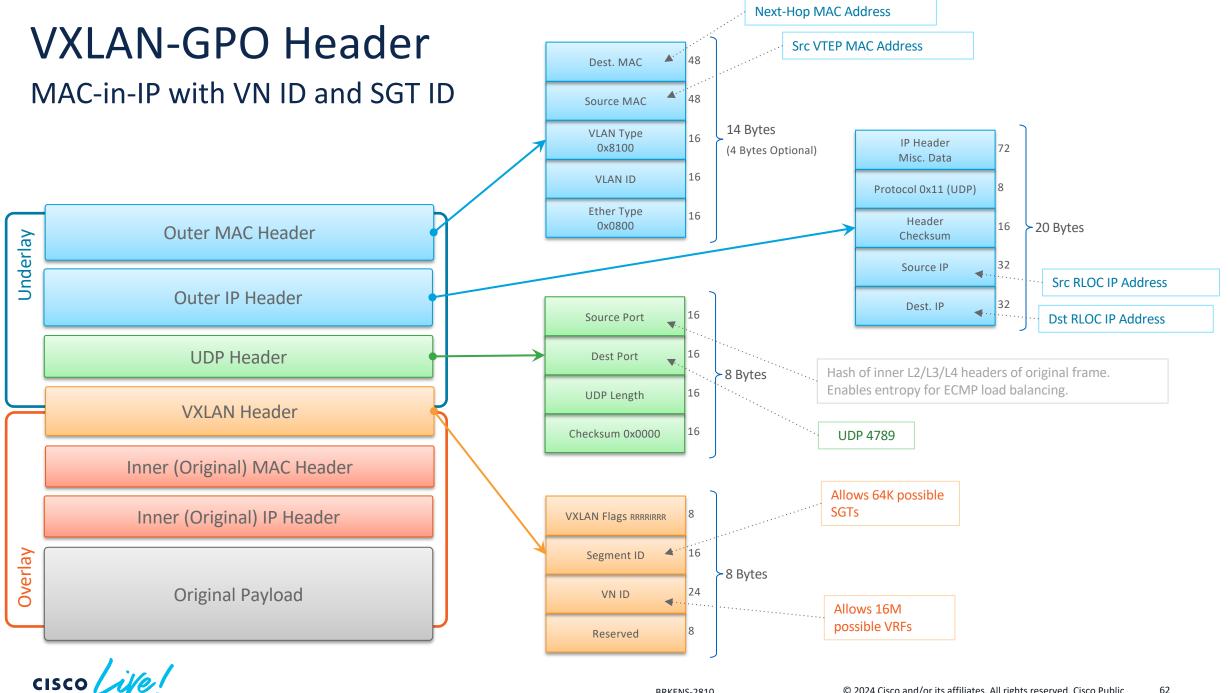
LISP/BGP

- Released circa 2017.
- Reliable and stable.
- BGP transport.

LISP Pub/Sub


- Released in 2022 with Cisco DNA Center* 2.2.3.x.
- Reliable and stable.
- Native LISP transport.
- Less Control Plane load.
- Faster convergence.
- Highly extensible.

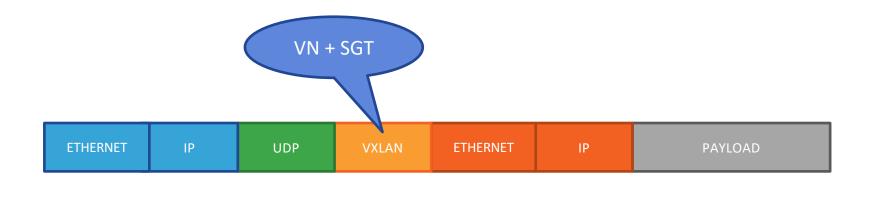
Fabric Fundamentals


Control Plane
 Data Plane
 Policy Plane

- 1. Control Plane: LISP
- 2. Data Plane: VXLAN

cisco ive

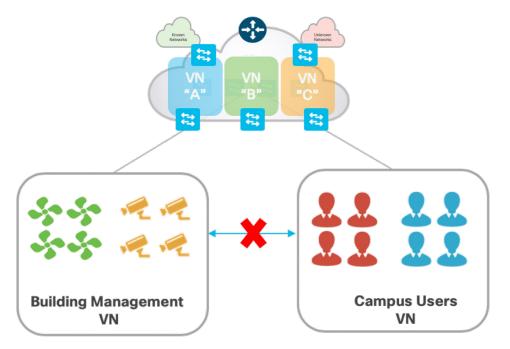
Fabric Fundamentals



cisco life!

Cisco SD-Access Fabric

- 1. Control Plane: LISP
- 2. Data Plane: VXLAN
- 3. Policy Plane: Group-Based Policy

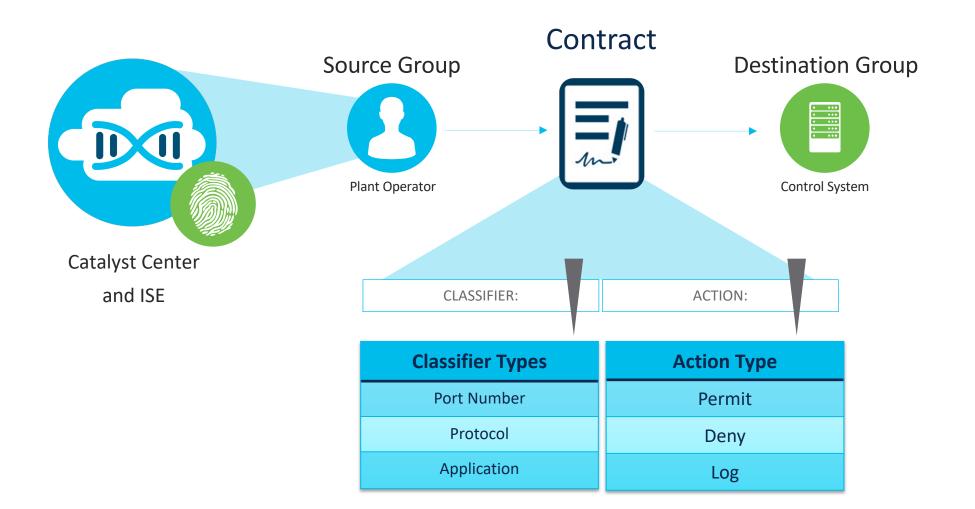


SD-Access Policy

Macro-Segmentation and Micro-Segmentation

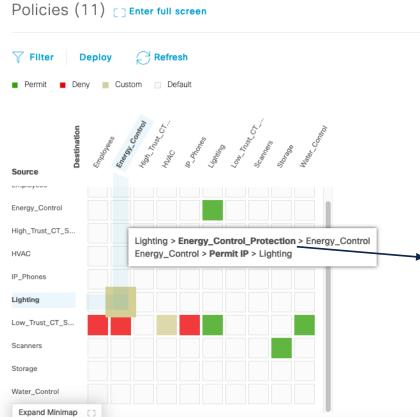
Virtual Network (VN)

First-level segmentation ensures **zero communication** between forwarding domains. Ability to consolidate multiple networks into one physical network.


Security Group Tag (SGT)

Second-level segmentation ensures **Group-Based Access Control** between groups in a VN. Ability to segment per endpoint based on minimum necessary access (Zero Trust).

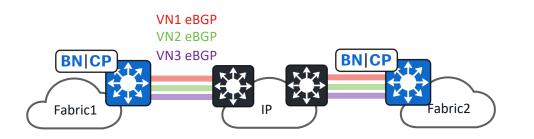
SD-Access Policy


Access Contracts

SD-Access Policy

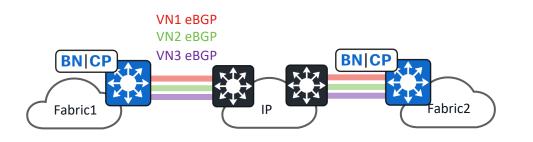
Group-Based Access Control

- 1. Select Source Group(s)
- 2. Select **Destination Group**(s)
- 3. Select Access Contract(s)


<u> </u>	Acces	ss Contract				
ergy_Control	Name Energy_C	Control_Protection	Description	li		
	CONTR	ACT CONTENT (1)	Aurthopher	Turnet Parts of	Course (Do visioning	
	#	Action	Application https	Transport Protocol TCP/UDP	Source / Destination	OFF
	Default A	Action Permit	Logging OFF			

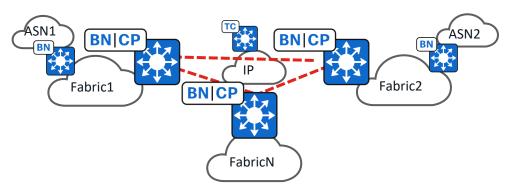
Multiple Fabrics

Transits, VN and SGT Preservation



IP-Based Transit

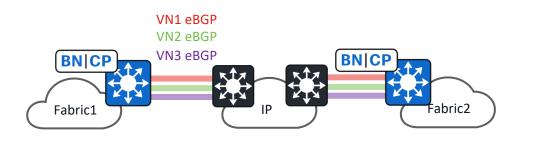
- Per-Layer-3-Virtual-Network eBGP peering to external routing domain, or LISP Extranet Provider VN eBGP peering to external routing domain.
- SGT propagation outside of fabric requires suitable hardware and software.



Transits, VN and SGT Preservation

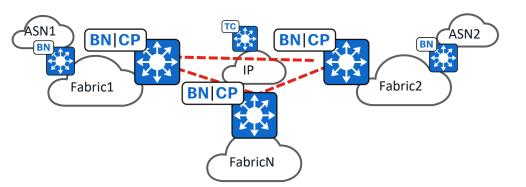
IP-Based Transit

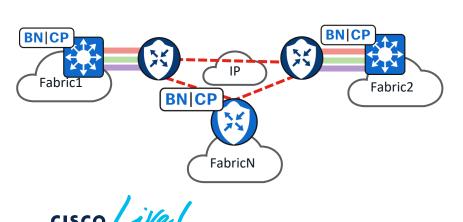
- Per-Layer-3-Virtual-Network eBGP peering to external routing domain, or LISP Extranet Provider VN eBGP peering to external routing domain.
- SGT propagation outside of fabric requires suitable hardware and software.



SD-Access Transit

- SD-Access LISP/VXLAN between Fabric Sites.
- Natively preserves Layer 3 Virtual Networks and SGTs.
- Capable of fabric as a transit between external routing domains.




Transits, VN and SGT Preservation

IP-Based Transit

- Per-Layer-3-Virtual-Network eBGP peering to external routing domain, or LISP Extranet Provider VN eBGP peering to external routing domain.
- SGT propagation outside of fabric requires suitable hardware and software.

SD-Access Transit

- SD-Access LISP/VXLAN between Fabric Sites.
- Natively preserves Layer 3 Virtual Networks and SGTs.
- Capable of fabric as a transit between external routing domains.

SD-WAN Transit

- Cisco SD-WAN between Fabric Sites.
- Capable of preserving Layer 3 Virtual Networks and SGTs.
- Dedicated SD-WAN Edge for design flexibility, Border Node port densities and port speeds. See <u>Independent Domains PDG</u>.

Cisco SD-Access Collaterals

Cisco Software-Defined Access for Industry Verticals

Cisco Software-Defined Access Enabling intent-based networking

Cisco Solution Validated Profiles (CVPs)

- Cisco Large Enterprise and Government Profile
- Healthcare Vertical
- Financial Vertical
- Healthcare Vertical
- Manufacturing Vertical
- **Retail Vertical**
 - University Vertical

Cisco SD-Access YouTube Link

HOME	VIDEOS	PLAYLISTS	COMMU	JNITY CHANNE	ELS ABOUT	Q	>
When Oisses	CD Assess The	Eleventes Ditale	:	Why Cisco SD Access	The Elevator Pitch		
Will Cisco	SD Access The	e Elevator Pitch		1,530 views • 4 months ago			
				The IT world is now a Ze			
Why Ciso The Elevator Pi				and segmentation are be many organizations do n these challenges.			
The Elevator Pi Scott Heelplan Technical Marketin		; .> @ ¢		many organizations do n	not have a network that of the 8-minute elevator pite	can address	
The Elevator Pi Scott Hedgdos Schridal Marketer Prerprise Network 000	e Engineer Technical Leader Technical Leader Technical Cove 00 / 7:49 • Chispters PLAY ALL		⊨ ::Ch	many organizations do n these challenges. This video will give you t Cisco SD-Access utilizer READ MORE	not have a network that of the seminoteneous of the seminute elevator pithes multi-tier segmentation	can address	
Uploads	e Engineer Technical Leader Technical Leader Technical Cove 00 / 7:49 • Chispters PLAY ALL	> <u>c</u>	⊨ ::Ch	many organizations do n these challenges. This video will give you t Cisco SD-Access utilizer	not have a network that of the 8-minute elevator pite	can address	
The Elevator Pi Scott Hedgdos Schridal Marketer Prerprise Network 000	e Ingeneer Technical Leader 00 / 7/49 • Chapters PLAY ALL		x III Ch	many organizations do n these challenges. This video will give you t Cisco SD-Access utilizer READ MORE	not have a network that of the 8-minute elevator pit the 8-minute elevator pit the 8-minute elevator pit the segmentation	can address	357 Access Wireless Updates & FIAB

Multiple Cisco DNA Center to ISE

Cisco SD-Access Design Tool

EN&C Validated Designs

•

•

•

.

<u>The Latest SD-Access</u> <u>Guides</u>

CISCO The bridge to possible

Thank you

